Polygonal Skeletons

Tutorial 2 - Computational Geometry

The Skeleton of a Simple Polygon

- A polygon is a closed contour in the plane, which might contain holes (which are simple polygons as well).
- A skeleton of a polygon is a partition of the polygon into regions, creating internal vertices, edges and faces.
- We will deal with two main types of skeletons: The Medial Axis and the Straight skeleton.

The Medial Axis

- The Medial axis: the locus of the centers of circles that are tangent to the polygon at two or more points.
- locus: a set of points whose location satisfies one or more specified conditions.

The Medial Axis: Example

The Medial Axis - Continued

- The Medial Axis comprises straight lines if the polygon is convex.
- If the object is concave, every reflex vertex induces a curved edge.

Another Problem

The Straight Skeleton

- The Straight Skeleton: the trace of the angular bisectors of the vertices, as the edges of the polygon are propagating at equal rate, until the polygon vanishes.
- It is a linear approximation of the Medial Axis.

The Straight Skeleton

The Propagation of The Polygon

- As the edges of the polygon propagate at equal rate, the vertices move along the bisector of its two adjacent edges.
- Two possible events (assuming g.p.) may occur during the propagation:

- Edge Event- A portion (or the whole) of an edge vanishes.
- Split Event- A reflex vertex hits an opposite edge, splitting the polygon into two disconnected parts.

An Application of The Straight Skeleton

The Properties of The Straight Skeleton

- The faces of the straight skeleton are monotone (why?).
- Every internal skeleton node has degree 3*
- The Medial Axis and the straight skeleton of a convex polygon are identical.
- There are $2 n-3$ edges, $n-2$ inner vertices and n faces in a straight skeleton.

Designing Rooftops

- When assigning a height field to an inner node - its offset distance from the edge - the skeleton can be interpreted as the rooftop of a house which walls are the
H ow to fit a roof to these walls?
 sides of the original polygon.

Straight-Skeleton Computation

- Most algorithms take a straight-forward approach of event-based simulation of the propagation.
- The most time-efficient algorithm known has time complexity $O\left(n^{1+\varepsilon}+n^{8 / 11+\varepsilon} r^{9 / 11+\varepsilon}\right)$ $r=\#$ reflex vertices
$n=\#$ vertices

Felkel \& Obdrzálek 98’

- Felkel \& Obdrzálek offered a straightforward event-based algorithm.
- The algorithm computes and simulates the events by maintaining a set of circular Lists of Active Vertices called LAVs.
- The algorithm does not construct the intermediate offset polygons (although easily deduced), but only the skeleton itself.

The algorithm for Convex Polygons

- Initialization
- Create a LAV for the polygon - a circular list of its vertices by order.
- Add pointers for the edges between vertices.
- Compute a bisector per vertex.
- All vertices are marked "unused".

- Calculation of initial edge events
- Compute the intersection point of every set of adjacent bisectors - this point is the location of the edge event between them.
- Queue the edge event (marked EDGE_EVENT) in a priority queue according to the distance of the intersection from the line supporting the edge.

Propagation Step

- While the events queue != empty do
- If next event uses used vertices, discard event.
- Else, handle edge event
- If LAV contains more than 3 edges
- Create two edges of the skeleton, each from one of the event vertices to the location of the event (the intersection point).
- Remove these two vertices from the LAV, and mark them as "used".
- Create a new vertex, located at the intersection point, and put it in its place in the LAV, pointing to its adjacent edges.
- Compute new edge events for the vertices of these adjacent edges.
- Else, create new vertex at the intersection, and skeletal edges from each of the 3 vertices.

Propagation

Complexity

- The number of vertices reduces to zero, and the algorithm always stops.
- Complexity: O(nlogn), for maintaining the events queue. Every event handling is $O(1)$.

The Algorithm for Nonconvex Polygons

- An extension of the convex algorithm.
- We have to find out when split events occur.
- Another step in initialization:
- Determine all possibilities of a reflex vertex hitting an opposite edge.
- Queue these events as SPLIT_EVENT

Obtaining Split Events

- A splitting location B is equidistant from:
- the lines supporting the edges adjacent to the reflex vertex, and;
- the line supporting the opposite edge.
- For every reflex vertex, we traverse all of the edges in the polygon and test for intersection.
- A simple intersection test between the bisector of the reflex vertex and the opposite edge isn't enough (why?).

Obtaining Split Events - Continued

- The intersection point between the reflex vertex and the line supporting the opposite edges must be in the area defined between the edge and the bisectors of its two vertices.
- The intersection point is the meeting point of the three bisectors between all three participating edges (the two defining the reflex vertex and the split edge).

Obtaining Split Events

- Not all reflex vertices eventually cause split events. (A is an edge event, and B is a split event).

Handling Split Events

- When a split event occurs, the polygon splits into two parts.
- The LAV in context is split into two LAVs as well.

Handling Split Events - Cont'd

- The splitting vertex is replaced with two new vertices, each in the appropriate place in a different LAV.
- New bisectors and edge events are calculated for each of these vertices (why only edge events?)
- The propagation continues...

Handling Multiple Splitting

- An edge can be split several time.
- Any split event handling must realize what part of the edge it is splitting (i.e. what are the proper endpoints).
- It is done by traversing the LAV in context at each handling of a split event.

Summary of the General Algorithm

- Initialization
- Create one LAV
- Compute bisectors
- Compute split and edge events
- Queue all events according to time (distance)

Summary - Continued

- Propagation
- While event queue has events
- If new event contains used vertices, discard event.
- If event is edge event, handle as in the convex case. Mark vertices as "used". If the LAV in context contains 3 vertices, close up the skeleton.
- If event is split event, split the LAV into two, and maintain pointers accordingly. Mark the splitting vertex as "used".
- In the end, there are no LAVs left!

A Simple Polygon with Holes

- The approach is similar.
- Any hole is a different LAV in the initialization.
- Two LAVs can merge when a split event occurs between two different boundaries correct LAV pointer treatment should be applied.

The Complexity of the Algorithm

- Initializing and handling each split event require traversing all of the edges per each reflex vertex.
- So, the total complexity is $O(r n+n \log n)$.
- $r=$ \# reflex vertices
- If $r=O(n)$ then the algorithm is quadratic - a reachable upper bound.
- Most practical cases behave better.
- Space complexity is $O(n)$.

3D Straight skeletons - A (New) View

- The faces of a polyhedron propagate at equal rate.
- Skeleton is the trace of faces, edges and vertices.

Bibliography

- Source of images (and recommended reading):
- "Medial Axis presentation" -
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxi
sEtc/presentation/
- "Single-Fold Disk Hiding" http://jeff.cs.mcgill.ca/~mcleish/507/single.html
- "Straight skeleton of a simple polygon" http://compgeom.cs.uiuc.edu/~jeffe/open/skeleton.html
- "Raising roofs, crashing cycles, and playing pool" http://compgeom.cs.uiuc.edu/~jeffe/pubs/cycles.html
- "Designing Roofs of Buildings" http://www.sable.mcgill.ca/~dbelan2/roofs/roofs.html
- Straight Skeleton Computation
- P. Felkel and S. Obdrzalek, Straight skeleton computation, Spring Conf. on Computer Graphics, Budmerice, Slovakia, 210--218, 1998.

