
Polygonal Skeletons 

Tutorial 2 – Computational Geometry 



The Skeleton of a Simple Polygon 

 A polygon is a closed contour in the plane, which might 

contain holes (which are simple polygons as well). 

 A skeleton of a polygon is a partition of the polygon into 

regions, creating internal vertices, edges and faces. 

 We will deal with two main types of skeletons: The Medial 

Axis and the Straight skeleton.  



The Medial Axis 

 The Medial axis: the locus of the centers of circles that 

are tangent to the polygon at two or more points. 

 locus: a set of points whose location satisfies one or 

more specified conditions. 

 

 



The Medial Axis: Example 



The Medial Axis – Continued 

 The Medial Axis comprises straight lines if the 

polygon is convex. 

 If the object is concave, every reflex vertex 

induces a curved edge. 



Another Problem 



The Straight Skeleton 

 The Straight Skeleton: the trace of the angular 
bisectors of the vertices, as the edges of the 
polygon are propagating at equal rate, until the 
polygon vanishes. 

 It is a linear approximation of the Medial Axis. 

 



The Straight Skeleton 



The Propagation of The Polygon 

 As the edges of the polygon propagate 
at equal rate, the vertices move along 
the bisector of its two adjacent edges. 

 

 Two possible events (assuming g.p.) 
may occur during the propagation: 

 Edge Event– A portion (or the whole) 

of an edge vanishes. 

 Split Event– A reflex vertex hits an 

opposite edge, splitting the polygon 

into two disconnected parts. 



An Application of 

The Straight Skeleton 



The Properties of The Straight Skeleton 





Designing Rooftops 

 When assigning a 
height field to an 
inner node - its offset 
distance from the 
edge - the skeleton 
can be interpreted as 
the rooftop of a house 
which walls are the 
sides of the original 
polygon. 



Straight-Skeleton Computation 
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Felkel & Obdrzálek 98’ 

 Felkel & Obdrzálek offered a straightforward 

event-based algorithm. 

 The algorithm computes and simulates the 

events by maintaining a set of circular Lists 

of Active Vertices called LAVs. 

 The algorithm does not construct the 

intermediate offset polygons (although easily 

deduced), but only the skeleton itself. 



The algorithm for Convex Polygons 

 Initialization 

 Create a LAV for the polygon – a circular 
list of its vertices by order. 

 Add pointers for the edges between 
vertices. 

 Compute a bisector per vertex. 

 All vertices are marked “unused”. 

 Calculation of initial edge events 

 Compute the intersection point of every set 
of adjacent bisectors – this point is the 
location of the edge event between them. 

 Queue the edge event  (marked 
EDGE_EVENT) in a priority queue 
according to the distance of the 
intersection from the line supporting the 
edge. 

 

 



Propagation Step 

 While the events queue != empty do 
 If next event uses used vertices, discard event. 

 Else, handle edge event 

 If LAV contains more than 3 edges 

 Create two edges of the skeleton, each from one of the event 
vertices to the location of the event (the intersection point). 

 Remove these two vertices from the LAV, and mark them as 
“used”. 

 Create a new vertex, located at the intersection point, and put it in 
its place in the LAV, pointing to its adjacent edges. 

 Compute new edge events for the vertices of these adjacent 
edges. 

 Else, create new vertex at the intersection, and skeletal edges 
from each of the 3 vertices. 



Propagation 



Complexity 





The Algorithm for Nonconvex Polygons 

 An extension of the convex algorithm. 

 We have to find out when split events occur. 

 Another step in initialization: 

 Determine all possibilities of a reflex vertex hitting 

an opposite edge. 

 Queue these events as SPLIT_EVENT 



Obtaining Split Events 

 A splitting location B is equidistant from: 

  the lines supporting the edges adjacent to the 

reflex vertex, and; 

 the line supporting the opposite edge. 

 For every reflex vertex, we traverse all of the 

edges in the polygon and test for intersection. 

 A simple intersection test between the bisector of 

the reflex vertex and the opposite edge isn’t 

enough (why?). 



Obtaining Split Events – Continued 

 The intersection point between the reflex vertex and the 

line supporting the opposite edges must be in the area 

defined between the edge and the bisectors of its two 

vertices. 

 The intersection point is the meeting point of the three 

bisectors between all three participating edges (the two 

defining the reflex vertex and the split edge). 



Obtaining Split Events 

 Not all reflex vertices eventually cause split 

events. (A is an edge event, and B is a split 

event). 



Handling Split Events 

 When a split event occurs, the polygon splits 

into two parts. 

 The LAV in context is split into two LAVs as 

well.  



Handling Split Events – Cont’d 

 The splitting vertex is replaced with two new 

vertices, each in the appropriate place in a 

different LAV. 

 New bisectors and edge events are 

calculated for each of these vertices (why 

only edge events?) 

 The propagation continues… 



Handling Multiple Splitting 

 An edge can be split several time. 

 Any split event handling must realize what part 

of the edge it is splitting (i.e. what are the proper 

endpoints). 

 It is done by traversing the LAV in context at 

each handling of a split event. 



Summary of the General Algorithm 

 Initialization 

 Create one LAV 

 Compute bisectors 

 Compute split and edge events 

 Queue all events according to time (distance) 



Summary – Continued 

 Propagation 

 While event queue has events 

 If new event contains used vertices, discard event. 

 If event is edge event, handle as in the convex case. 

Mark vertices as “used”. If the LAV in context contains 3 

vertices, close up the skeleton. 

 If event is split event, split the LAV into two, and 

maintain pointers accordingly. Mark the splitting vertex 

as “used”. 

 

 In the end, there are no LAVs left! 
 



A Simple Polygon with Holes 

 The approach is similar. 

 Any hole is a different LAV in the initialization. 

 Two LAVs can merge when a split event 

occurs between two different boundaries – 

correct LAV pointer treatment should be 

applied. 



The Complexity of the Algorithm 





3D Straight skeletons – A (New) View 

 The faces of a polyhedron propagate at equal 

rate. 

 Skeleton is the trace of faces, edges and 

vertices. 
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