
Polygonal Skeletons

Tutorial 2 – Computational Geometry

The Skeleton of a Simple Polygon

 A polygon is a closed contour in the plane, which might

contain holes (which are simple polygons as well).

 A skeleton of a polygon is a partition of the polygon into

regions, creating internal vertices, edges and faces.

 We will deal with two main types of skeletons: The Medial

Axis and the Straight skeleton.

The Medial Axis

 The Medial axis: the locus of the centers of circles that

are tangent to the polygon at two or more points.

 locus: a set of points whose location satisfies one or

more specified conditions.

The Medial Axis: Example

The Medial Axis – Continued

 The Medial Axis comprises straight lines if the

polygon is convex.

 If the object is concave, every reflex vertex

induces a curved edge.

Another Problem

The Straight Skeleton

 The Straight Skeleton: the trace of the angular
bisectors of the vertices, as the edges of the
polygon are propagating at equal rate, until the
polygon vanishes.

 It is a linear approximation of the Medial Axis.

The Straight Skeleton

The Propagation of The Polygon

 As the edges of the polygon propagate
at equal rate, the vertices move along
the bisector of its two adjacent edges.

 Two possible events (assuming g.p.)
may occur during the propagation:

 Edge Event– A portion (or the whole)

of an edge vanishes.

 Split Event– A reflex vertex hits an

opposite edge, splitting the polygon

into two disconnected parts.

An Application of

The Straight Skeleton

The Properties of The Straight Skeleton

Designing Rooftops

 When assigning a
height field to an
inner node - its offset
distance from the
edge - the skeleton
can be interpreted as
the rooftop of a house
which walls are the
sides of the original
polygon.

Straight-Skeleton Computation

1 8/11 9/11()O n n r

Felkel & Obdrzálek 98’

 Felkel & Obdrzálek offered a straightforward

event-based algorithm.

 The algorithm computes and simulates the

events by maintaining a set of circular Lists

of Active Vertices called LAVs.

 The algorithm does not construct the

intermediate offset polygons (although easily

deduced), but only the skeleton itself.

The algorithm for Convex Polygons

 Initialization

 Create a LAV for the polygon – a circular
list of its vertices by order.

 Add pointers for the edges between
vertices.

 Compute a bisector per vertex.

 All vertices are marked “unused”.

 Calculation of initial edge events

 Compute the intersection point of every set
of adjacent bisectors – this point is the
location of the edge event between them.

 Queue the edge event (marked
EDGE_EVENT) in a priority queue
according to the distance of the
intersection from the line supporting the
edge.

Propagation Step

 While the events queue != empty do
 If next event uses used vertices, discard event.

 Else, handle edge event

 If LAV contains more than 3 edges

 Create two edges of the skeleton, each from one of the event
vertices to the location of the event (the intersection point).

 Remove these two vertices from the LAV, and mark them as
“used”.

 Create a new vertex, located at the intersection point, and put it in
its place in the LAV, pointing to its adjacent edges.

 Compute new edge events for the vertices of these adjacent
edges.

 Else, create new vertex at the intersection, and skeletal edges
from each of the 3 vertices.

Propagation

Complexity

The Algorithm for Nonconvex Polygons

 An extension of the convex algorithm.

 We have to find out when split events occur.

 Another step in initialization:

 Determine all possibilities of a reflex vertex hitting

an opposite edge.

 Queue these events as SPLIT_EVENT

Obtaining Split Events

 A splitting location B is equidistant from:

 the lines supporting the edges adjacent to the

reflex vertex, and;

 the line supporting the opposite edge.

 For every reflex vertex, we traverse all of the

edges in the polygon and test for intersection.

 A simple intersection test between the bisector of

the reflex vertex and the opposite edge isn’t

enough (why?).

Obtaining Split Events – Continued

 The intersection point between the reflex vertex and the

line supporting the opposite edges must be in the area

defined between the edge and the bisectors of its two

vertices.

 The intersection point is the meeting point of the three

bisectors between all three participating edges (the two

defining the reflex vertex and the split edge).

Obtaining Split Events

 Not all reflex vertices eventually cause split

events. (A is an edge event, and B is a split

event).

Handling Split Events

 When a split event occurs, the polygon splits

into two parts.

 The LAV in context is split into two LAVs as

well.

Handling Split Events – Cont’d

 The splitting vertex is replaced with two new

vertices, each in the appropriate place in a

different LAV.

 New bisectors and edge events are

calculated for each of these vertices (why

only edge events?)

 The propagation continues…

Handling Multiple Splitting

 An edge can be split several time.

 Any split event handling must realize what part

of the edge it is splitting (i.e. what are the proper

endpoints).

 It is done by traversing the LAV in context at

each handling of a split event.

Summary of the General Algorithm

 Initialization

 Create one LAV

 Compute bisectors

 Compute split and edge events

 Queue all events according to time (distance)

Summary – Continued

 Propagation

 While event queue has events

 If new event contains used vertices, discard event.

 If event is edge event, handle as in the convex case.

Mark vertices as “used”. If the LAV in context contains 3

vertices, close up the skeleton.

 If event is split event, split the LAV into two, and

maintain pointers accordingly. Mark the splitting vertex

as “used”.

 In the end, there are no LAVs left!

A Simple Polygon with Holes

 The approach is similar.

 Any hole is a different LAV in the initialization.

 Two LAVs can merge when a split event

occurs between two different boundaries –

correct LAV pointer treatment should be

applied.

The Complexity of the Algorithm

3D Straight skeletons – A (New) View

 The faces of a polyhedron propagate at equal

rate.

 Skeleton is the trace of faces, edges and

vertices.

Bibliography

 Source of images (and recommended reading):
 “Medial Axis presentation” -

http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxi
sEtc/presentation/

 “Single-Fold Disk Hiding” -
http://jeff.cs.mcgill.ca/~mcleish/507/single.html

 “Straight skeleton of a simple polygon” -
http://compgeom.cs.uiuc.edu/~jeffe/open/skeleton.html

 “Raising roofs, crashing cycles, and playing pool” -
http://compgeom.cs.uiuc.edu/~jeffe/pubs/cycles.html

 “Designing Roofs of Buildings “ -
http://www.sable.mcgill.ca/~dbelan2/roofs/roofs.html

 Straight Skeleton Computation
 P. Felkel and S. Obdrzalek, Straight skeleton computation, Spring Conf. on

Computer Graphics, Budmerice, Slovakia, 210--218, 1998.

http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxisEtc/presentation/
http://compgeom.cs.uiuc.edu/~jeffe/open/skeleton.html
http://www.sable.mcgill.ca/~dbelan2/roofs/roofs.html
http://www.sable.mcgill.ca/~dbelan2/roofs/roofs.html
http://www.sable.mcgill.ca/~dbelan2/roofs/roofs.html

