Polygonal Skeletons

The Skeleton of a Simple Polygon

- A polygon is a closed contour in the plane, which might contain holes (which are simple polygons as well).
- A <u>skeleton</u> of a polygon is a partition of the polygon into regions, creating internal vertices, edges and faces.
- We will deal with two main types of skeletons: The Medial Axis and the Straight skeleton.

The Medial Axis

- The Medial axis: the locus of the centers of circles that are tangent to the polygon at two or more points.
- <u>locus</u>: a set of points whose location satisfies one or more specified conditions.

The Medial Axis: Example

The Medial Axis – Continued

- The Medial Axis comprises straight lines if the polygon is convex.
- If the object is concave, every reflex vertex induces a curved edge.

Another Problem

The Straight Skeleton

- The Straight Skeleton: the trace of the angular bisectors of the vertices, as the edges of the polygon are propagating at equal rate, until the polygon vanishes.
- It is a **linear approximation** of the Medial Axis.

The Straight Skeleton

The Propagation of The Polygon

- As the edges of the polygon propagate at equal rate, the vertices move along the bisector of its two adjacent edges.
- Two possible events (assuming g.p.) may occur during the propagation:
 - Edge Event— A portion (or the whole) of an edge vanishes.
 - Split Event– A reflex vertex hits an opposite edge, splitting the polygon into two disconnected parts.

An Application of The Straight Skeleton

The Properties of The Straight Skeleton

- The faces of the straight skeleton are monotone (why?).
- Every internal skeleton node has degree 3*
- The Medial Axis and the straight skeleton of a convex polygon are identical.
- There are 2n 3 edges, n 2 inner vertices and n faces in a straight skeleton.

Designing Rooftops

When assigning a height field to an inner node - its offset distance from the edge - the skeleton can be interpreted as the rooftop of a house which walls are the sides of the original polygon.

Straight-Skeleton Computation

- Most algorithms take a straight-forward approach of event-based simulation of the propagation.
- The most time-efficient algorithm known has time complexity $O(n^{1+\varepsilon} + n^{8/11+\varepsilon}r^{9/11+\varepsilon})$
 - r = # reflex vertices
 - n = # vertices

Felkel & Obdrzálek 98'

- Felkel & Obdrzálek offered a straightforward event-based algorithm.
- The algorithm computes and simulates the events by maintaining a set of circular Lists of Active Vertices called LAVs.
- The algorithm does not construct the intermediate offset polygons (although easily deduced), but only the skeleton itself.

The algorithm for Convex Polygons

Initialization

- Create a LAV for the polygon a circular list of its vertices by order.
- Add pointers for the edges between vertices.
- Compute a bisector per vertex.
- All vertices are marked "unused".

Calculation of initial edge events

- Compute the intersection point of every set of adjacent bisectors – this point is the location of the edge event between them.
- Queue the edge event (marked EDGE_EVENT) in a priority queue according to the distance of the intersection from the line supporting the edge.

Propagation Step

- While the events queue != empty do
 - If next event uses used vertices, discard event.
 - Else, handle edge event
 - If LAV contains more than 3 edges
 - Create two edges of the skeleton, each from one of the event vertices to the location of the event (the intersection point).
 - Remove these two vertices from the LAV, and mark them as "used".
 - Create a new vertex, located at the intersection point, and put it in its place in the LAV, pointing to its adjacent edges.
 - Compute new edge events for the vertices of these adjacent edges.
 - Else, create new vertex at the intersection, and skeletal edges from each of the 3 vertices.

Propagation

Complexity

- The number of vertices reduces to zero, and the algorithm always stops.
- Complexity: O(nlogn), for maintaining the events queue. Every event handling is O(1).

The Algorithm for Nonconvex Polygons

- An extension of the convex algorithm.
- We have to find out when split events occur.
- Another step in initialization:
 - Determine all possibilities of a reflex vertex hitting an opposite edge.
 - Queue these events as SPLIT_EVENT

Obtaining Split Events

- A splitting location B is equidistant from:
 - the lines supporting the edges adjacent to the reflex vertex, and;
 - □ the line supporting the opposite edge.
- For every reflex vertex, we traverse all of the edges in the polygon and test for intersection.
 - A simple intersection test between the bisector of the reflex vertex and the opposite edge isn't enough (why?).

Obtaining Split Events – Continued

- The intersection point between the reflex vertex and the line supporting the opposite edges must be in the area defined between the edge and the bisectors of its two vertices.
- The intersection point is the meeting point of the three bisectors between all three participating edges (the two defining the reflex vertex and the split edge).

Obtaining Split Events

Not all reflex vertices eventually cause split events. (A is an edge event, and B is a split event).

Handling Split Events

- When a split event occurs, the polygon splits into two parts.
- The LAV in context is split into two LAVs as well.

Handling Split Events – Cont'd

- The splitting vertex is replaced with two new vertices, each in the appropriate place in a different LAV.
- New bisectors and edge events are calculated for each of these vertices (why only edge events?)
- The propagation continues...

Handling Multiple Splitting

- An edge can be split several time.
- Any split event handling must realize what part of the edge it is splitting (i.e. what are the proper endpoints).
- It is done by traversing the LAV in context at each handling of a split event.

Summary of the General Algorithm

Initialization

- Create one LAV
- Compute bisectors
- Compute split and edge events
- Queue all events according to time (distance)

Summary – Continued

Propagation

While event queue has events

- If new event contains used vertices, discard event.
- If event is edge event, handle as in the convex case. Mark vertices as "used". If the LAV in context contains 3 vertices, close up the skeleton.
- If event is split event, split the LAV into two, and maintain pointers accordingly. Mark the splitting vertex as "used".

In the end, there are no LAVs left!

A Simple Polygon with Holes

- The approach is similar.
- Any hole is a different LAV in the initialization.
- Two LAVs can merge when a split event occurs between two different boundaries – correct LAV pointer treatment should be applied.

The Complexity of the Algorithm

- Initializing and handling each split event require traversing all of the edges per each reflex vertex.
- So, the total complexity is O(rn + nlogn).
 - \square r = # reflex vertices
- If r = O(n) then the algorithm is quadratic a reachable upper bound.
- Most practical cases behave better.
- Space complexity is *O(n)*.

3D Straight skeletons – A (New) View

- The faces of a polyhedron propagate at equal rate.
- Skeleton is the trace of faces, edges and vertices.

Bibliography

Source of images (and recommended reading):

- "Medial Axis presentation" -<u>http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/MedialAxi</u> <u>sEtc/presentation/</u>
- "Single-Fold Disk Hiding" http://jeff.cs.mcgill.ca/~mcleish/507/single.html
- "Straight skeleton of a simple polygon" -<u>http://compgeom.cs.uiuc.edu/~jeffe/open/skeleton.html</u>
- "Raising roofs, crashing cycles, and playing pool" http://compgeom.cs.uiuc.edu/~jeffe/pubs/cycles.html
- "Designing Roofs of Buildings " -<u>http://www.sable.mcgill.ca/~dbelan2/roofs/roofs.html</u>

Straight Skeleton Computation

 P. Felkel and S. Obdrzalek, Straight skeleton computation, Spring Conf. on Computer Graphics, Budmerice, Slovakia, 210--218, 1998.